3-Hydroxyleukotriene B_{4} (3-OH-LTB ${ }_{4}$): Total Synthesis and Stereochemical Assignment ${ }^{1}$

Rama K. Bhatt, ${ }^{\dagger}$ Kamlesh Chauhan, ${ }^{\dagger}$ Pat Wheelan ${ }^{\ddagger}{ }^{\ddagger}$ Robert C. Murphy, ${ }^{\ddagger}$ and J. R. Falck ${ }^{*}$, \dagger
Contribution from the Departments of Molecular Genetics and Pharmacology. University of Texas Southwestern Medical Center, Dallas, Texas 75235, and Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206

Received January 12, 1994°

Abstract

The asymmetric total synthesis of 3-hydroxyleukotriene B_{4} (3-OH-LTB $)_{4}$), a ethanol-inducible proinflammatory autacoid, was achieved using a triply convergent strategy for the sequential union of propargylic arsonium salt 3 with pyranosides $2 \mathrm{a}, \mathrm{b}$ and furanose 4. Both saccharide subunits were derived from commercial 2-deoxy-D-ribose. The key transformation involved palladium-mediated coupling of bromoacetylenide 9 with stannylglycal 6a,b. Subsequent Rieke zinc hydrogenation of acetylene $10 \mathrm{a}, \mathrm{b}$ and controlled ionic reduction of the cross-conjugated cyclic enol ether using $\mathrm{NaBH}_{3} \mathrm{CN}$ at $\mathrm{pH} \sim 4-4.5$ established the cis- $\Delta^{6,7}$-olefin and $\mathrm{C}(5)$-hydroxyl stereochemistry, respectively, and led to 11a,b. Methyllactol hydrolysis, PCC oxidation, methanolysis, and desilylation afforded 3(R)- and 3(S)-OHLTB_{4} methyl esters, respectively. On the basis of chromatographic and mass spectral comparisons, enzymatically derived $3-\mathrm{OH}-\mathrm{LTB}_{4}$ is composed principally of the $3(S)$-isomer ($>95 \%$).

Introduction

Leukotriene $\mathrm{B}_{4}\left(\mathrm{LTB}_{4}\right)$ is a dihydroxylated arachidonate metabolite of the 5 -lipoxygenase pathway. As a consequence of its potent and unique biological properties, it is thought to play a major role in a broad range of inflammatory, allergic, and immunologic responses. ${ }^{2}$ An important mechanism for the regulation of LTB_{4} is its clearance from the circulation via hepatic uptake, ${ }^{3}$ whereupon it is extensively modified. ${ }^{4}$ The generally inactive or attenuated catabolites ${ }^{5}$ are then eliminated by biliary excretion. Recently, however, Shirley and Murphy noted ${ }^{6}$ that relatively low concentrations of ethanol interfere with the normal process of LTB_{4} degradation by hepatocytes in vitro, with the consequent accumulation of a new metabolite identified by mass spectroscopy as 3 -hydroxy-leukotriene $\mathrm{B}_{4}\left(3-\mathrm{OH}-\mathrm{LTB}_{4}\right)$. This has significance when one realizes even moderate consumers of alcoholic beverages are exposed to such levels of ethanol. More importantly, 3-OH-LTB ${ }_{4}$ substantially retains or even transcends ${ }^{7}$ the pharmacologic characteristics of the parent autacoid and, thus, may represent the long-sought alcohol inducible chemotactic agent associated with fibrotic and cirrhotic liver degeneration. ${ }^{8}$

To expedite the physiologic evaluation of this unique, bioactive secondary metabolite ${ }^{9}$ and to establish its absolute configuration, we describe herein the asymmetric total synthesis of $3(R)$-and $3(S)-\mathrm{OH}-\mathrm{LTB}_{4}$ (1a and b, respectively). ${ }^{10}$ Our approach exploited a triply convergent strategy outlined retrosynthetically

[^0]Scheme 1

in Scheme 1 for the sequential union of propargylic arsonium salt 3 with pyranosides 2a,b and furanose 4 , corresponding to subunits $C(6)-C(8), C(1)-C(5)$, and $C(9)-C(20)$, respectively.

Preparation of Stannylglycal 6a,b

Methyl β-2-deoxy-D-ribopyranoside (5), obtained from commercial 2-deoxy-D-ribose according to literature procedure, ${ }^{11}$ was transformed to glycal 2a by regioselective protection of the $\mathrm{C}(3)$ alcohol via AgNO_{3}-promoted ${ }^{12}$ silylation in THF/pyridine (70\%) (Scheme 2). Minor amounts ($\sim 5-8 \%$) of contaminatory C(4). silyl ether were easily removed chromatographically, and the remaining free alcohol was dehydrated by way of the corresponding triflate using DBU (53\%). Low-temperature metalation ${ }^{13}$ with t - BuLi and stannylation of the resultant vinyl anion proceeded smoothly to give the versatile 1,5 -dicarbonyl chiron $6 \mathrm{a}(77 \%)$. Its $\mathbf{C}(3)$-epimer, $\mathbf{6 b}$, was also conveniently acquired from 5, albeit in modest yield, by double Mitsunobu inversion using excess

[^1]
Scheme 2

5

$$
\xrightarrow[37 \%]{a, b}
$$

$2 a$

6a d, e
45%

$\xrightarrow[34 \%]{a, b}$
2b

6b
${ }^{a}$ tert- $\mathrm{BuPh}_{2} \mathrm{SiCl}, \mathrm{AgNO}_{3}, \mathrm{THF} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(4: 3), 23{ }^{\circ} \mathrm{C}, 3 \mathrm{~h} .{ }^{b} \mathrm{Tf}_{2} \mathrm{O}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(6: 1),-20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; DBU (neat), $23^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$. ctert- $^{\circ}$ BuLi, THF, $-45^{\circ} \mathrm{C}, 1 \mathrm{~h} ; n-\mathrm{Bu}_{3} \mathrm{SnCl}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min} .{ }^{d}$ DEAD, $\mathrm{Ph}_{3} \mathrm{P}$, $4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}, \mathrm{PhCH}_{3}, 50^{\circ} \mathrm{C}, 4 \mathrm{~h} .{ }^{e} \mathrm{NaOMe} / \mathrm{MeOH}, 23^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

4-nitrobenzoic acid (50\%). ${ }^{14}$ Saponification furnished diol 7 (90%), which was carried through to $\mathbf{6 b}$ (27% overall) by the sequence described above. Interestingly, 7 behaved analogously to 5 during silylation, indicating the stereochemistry at the anomeric center has little influence on the differential reactivity of the vic-diols.

Convergence and Final Elaboration

The task of assembling the three subunits and concluding the functional group manipulations (Scheme 3) commenced with a Wittig condensation between the ylide of 3^{15} and the known furanose $4,{ }^{16}$ which like the other chiral moiety, traces its origins to 2-deoxy-D-ribose. This step took advantage of the rapid, baseinduced elimination of tosylate from the open-chain tautomer of 4 for the in situ generation of an E-enal. ${ }^{16}$ Subsequent olefination by the excess ylide produced E, E-dienyne 8 (64\%). A small amount of accompanying E, Z-dienyne was isomerized almost quantitatively to 8 by heating in cyclohexane with diphenyl disulfide for a few hours. ${ }^{17}$ The somewhat labile 8 was converted uneventfully to bromide 9 in excellent yield (90% overall) by fluoride-mediated desilylation, protection of the hydroxyl, and treatment with $\mathrm{NBS} / \mathrm{AgNO}_{3} .{ }^{18}$

Palladium(0) ${ }^{19}$-catalyzed coupling ${ }^{20}$ of the pivotal intermediate 9 with stannylglycal 6a gave rise to adduct 10a (71\%) and completed the basic carbon framework. ${ }^{21}$ The remaining stereocenters en route to 11a were established by facile cishydrogenation ${ }^{22}$ of the acetylene (90%) using Rieke zinc as

[^2]described by White ${ }^{23}$ and carefully controlled ionic reduction of the cross-conjugated cyclic enol ether with $\mathrm{NaBH}_{3} \mathrm{CN}$ at pH $\sim 4-4.5 .{ }^{13}$ The former reaction was completely stereoselective as judged by TLC and NMR. The latter reduction yielded 11a (63%) and $5(R)-11 \mathrm{a}(16 \%)$ in an ca. $4: 1$ ratio, in agreement with kinetically controlled axial hydride delivery as observed by others ${ }^{24}$ with analogous cyclic oxycarbenium ions. The configuration at $\mathrm{C}(5)$ was confirmed using lactone 12 (vide infra) by extensive spectral analysis including ${ }^{1} \mathrm{H}$ NMR data, ${ }^{25}$ which were in generally close agreement with that of Evans ${ }^{26}$ (Table 1). It is worth mentioning that reversing the order of reduction was unsuccessful; all attempts to reduce the enol ether without prior acetylene hydrogenation ${ }^{27}$ returned starting material or, under forcing conditions, gave complex product mixtures.

Mild acidic hydrolysis of the pyranoside moiety in 11a followed by pyridinium chlorochromate (PCC) oxidation formed 12a (60\% overall), from which 1a methyl ester was obtained by conventional lactone methanolysis (100%) and desilylation (81%) with Bu_{4} NF in the presence of HOAc to modulate the basicity. ${ }^{28}$ Repetition of the foregoing sequence beginning with 6 b proceeded analogously and with comparable yields to give 1 lb methyl ester. Routine hydrolysis ($\mathrm{LiOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3: 1), 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$) provided $\mathbf{1 a , b}(>95 \%)$ from the corresponding esters.

Stereochemical Assignment

Chromatographic (HPLC, GC) and mass spectral comparisons of $\mathbf{1 a , b}$ methyl esters with material isolated from the incubation of LTB_{4} with rat hepatocytes and esterified with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ demonstrated that the enzymatic product is principally composed of the $3(S)$-isomer ($>95 \%$). ${ }^{29}$ This is consistent with β-oxidation supported by mitochondrial or peroxisomal systems. The first step of β-oxidation in the peroxisome results in oxidation of $\mathrm{LTB}_{4}-$ CoA ester to a trans- α, β-enoyl-CoA ester which may be facilitated by the presence of ethanol. ${ }^{30}$ Hydration of the intermediate transα, β-enoyl-CoA ester by enoyl-CoA hydratase (crotanase) forms the S_{L}-isomer of 3-hydroxyacyl-CoA ester. There have been several reports of the release of a 3-hydroxyacyl-CoA ester from the β-oxidation complex and the appearance of the 3 -hydroxycarboxylicacid. ${ }^{31}$ However, for LTB_{4} metabolism in the presence of ethanol, the concentration of NAD^{+}in the peroxisome is reduced by metabolism of ethanol in the cytosol. Since this cofactor is required for subsequent oxidation of the $3(S)$-hydroxy-1-acyl-CoA ester into the 3-ketoacyl-CoA intermediate by 3-hydroxyacyl-CoA dehydrogenase, subsequent steps of β-oxidation are inhibited and the $3(S)$-hydroxy metabolite of LTB_{4} accumulates. Results concerning the physiologic significance of this process and the influence of stereochemistry on biological activity will be reported elsewhere. ${ }^{29}$

Experimental Section

Reagents and Methods. Unless otherwise stated, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} on a Bruker AC - 250 spectrometer and
(23) Chou, W.-N.; Clark, D. L.; White, J. B. Tetrahedron Lett. 1991, 32, 299-302.
(24) Dondoni, A.; Marra, A.; Scherrmann, M.-C. Tetrahedron Lett. 1993, 34, 7323-7326.
(25) It should be apparent that 12a has the same relative stereochemical relationship to the Evans syn-lactone as $5(R)$-12a does to the Evans antilactone. Since the absolute configuration at $\mathrm{C}(3)$ is known, the assignment at $\mathrm{C}(5)$ can be deduced. Likewise, 12 b relates to the anti-lactone as $5(R)-12 \mathrm{~b}$ does to the syn-lactone.
(26) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem Soc. 1988, 110, 3560-3578.
(27) Complexation of the acetylene with dicobalt octacarbonyl, followed by ionic reduction, returned mainly unreacted starting material or at higher temperatures ($>0^{\circ} \mathrm{C}$) led to decomplexation without enol reduction.
(28) Lee, T. J.; Holtz, W. J.; Smith, R. J. J. Org. Chem. 1982, 47, 47504757.
(29) For details of the stereochemical analysis as well as the results of recent biological testing consult, See: Wheelan, P.; Sala, A.; Folco, G.; Nicosia, S.; Falck, J. R.; Bhatt, R. K.; Murphy, R. C. Submitted for publication.
(30) Handler, J. A.; Thurman, R. G. J. Biol. Chem. 1990, 265, 1510-1515.
(31) Diczfalusy, U.; Alexson, S. E. H.; Sisfontes, L.; Olund, J.; Bjorkhem Biochim. Biophys. Acta 1990, 1043, 182-188. Tserng, K.-Y.; Jin, S.-J. J. Biol. Chem. 1990, 266, 11614-11620.

Scheme 3

a 3, $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$, THF/HMPA (5:1), -78° to $-30^{\circ} \mathrm{C}, 4 \mathrm{~h} .{ }^{b_{n}}$ - $\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 24^{\circ} \mathrm{C}, 1 \mathrm{~h} .{ }^{\text {ctert }}$ - $\mathrm{BuPh}_{2} \mathrm{SiCl}^{\circ} / \mathrm{AgNO}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$. ${ }^{d} \mathrm{NBS} / \mathrm{AgNO}_{3}$, acetone, $24^{\circ} \mathrm{C}, 1 \mathrm{~h} .{ }^{\mathrm{e}} 6 \mathrm{a}, \mathrm{b},\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}(0), \mathrm{PhCH}_{3}, 65^{\circ} \mathrm{C}, 12 \mathrm{~h} . /$ Rieke $\mathrm{Zn}, \mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(7: 5: 1), 65{ }^{\circ} \mathrm{C}, 3 \mathrm{~h} .8 \mathrm{NaBH} 3 \mathrm{CN} / 6 \%$ $\mathrm{HCl} / \mathrm{MeOH}(\sim \mathrm{pH} 4-4.5), \mathrm{EtOH}, 0^{\circ}$ to $24^{\circ} \mathrm{C} 5 \mathrm{~h} .{ }^{h} \mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(2: 1: 1), 60^{\circ} \mathrm{C}, 5 \mathrm{~h} . \mathrm{PCC}^{\mathrm{P}} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24^{\circ} \mathrm{C}, 3 \mathrm{~h} . \mathrm{JMeOH} / \mathrm{Et}_{3} \mathrm{~N}, 24^{\circ} \mathrm{C}$, $1 \mathrm{~h} . \mathrm{k}^{n}$ - $\mathrm{Bu}_{4} \mathrm{NF} / \mathrm{HOAc}(2: 1), \mathrm{THF}, 45^{\circ} \mathrm{C}, 14 \mathrm{~h}$.

Table 1. Lactone Coupling Constants

	 Evans Syn-lactone ${ }^{\circ}$ $\mathrm{Me}_{\mathrm{Me}_{0}}^{\mathrm{OH}} \mathrm{O}_{\mathrm{H}}$		 Evans Ant-lactone ${ }^{\circ}$
$J_{\omega 0}=17.2$	$J_{\text {co }}=17.7$	$J_{\infty}=17.2$	$J_{\text {ab }}=17.0$
$J_{\text {ec }}=3.9$	$J_{\text {sec }}=3.6$	$J_{\text {ee }}=5.8$	$J_{\text {ece }}=5.8$
$J_{\text {ad }}=1.5$	$J_{\text {det }}=1.4$	$J_{\text {md }}=1.3$	$J_{\text {Jod }}=1.3$
$J_{D C}=5.2$	$J_{b c}=4.7$	$J_{D C}=7.9$	$J_{D C}=7.6$
$J_{\text {ct }}=3.6$	$J_{\text {cod }}=3.6$	$J_{\infty<1}=4.5$	$J_{\text {ct }}=4.3$
$J_{c \infty}=3.2$	$J_{\infty}=3.1$	$J_{\infty}=9.1$	$J_{\infty}=9.1$
$J_{\text {de }}=14.6$	$J_{\infty}=14.5$	$J_{\infty}=14.3$	$J_{0 \theta}=13.8$
$\mathrm{J}_{\text {ot }}=2.3$	$J_{\text {ar }}=2.4$	$J_{\text {of }}=3.5$	$J_{d t}=3.1$
$J_{\text {et }}=11.7$	$J_{\text {ar }}=11.6$	$J_{a 1}=11.7$	$J_{\text {at }}=11.7$

[^3]NSF (DIR9017262). Elemental analyses were performed at Southern Methodist University, Dallas, TX.

All reactions were maintained under an argon atmosphere. Anhydrous solvents were freshly distilled from sodium benzophenone ketyl, except for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toulene, and HMPA, which were distilled from CaH_{2}.

Tetrakis(triphenylphosphine)palladium(0) was freshly prepared as previously described. ${ }^{32}$ Extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered prior to evaporation on a rotary evaporator under reduced pressure.

2(R)-Methoxy-4(S)-[(tert-butyldiphenylsilyl)oxy]-2,3-dihydro-4H-py$\operatorname{ran}(2 a)$. To a stirring solution of methyl β-2-deoxy-D-ribopyranoside ${ }^{11}$ (5) $(6.4 \mathrm{~g}, 43 \mathrm{mmol})$ in THF (20 mL) was added pyridine ($17 \mathrm{~g}, 0.215$ mol) followed by $\mathrm{AgNO}_{3}(8.83 \mathrm{~g}, 52 \mathrm{mmol})$. After 10 min in the dark, tert-butylchlorodiphenylsilane ($15.4 \mathrm{~g}, 56 \mathrm{mmol}$) was added in one portion and the stirring continued for an additional 3 h . The reaction mixture was filtered through Celite 535 , and the filter cake was washed with $E t_{2} \mathrm{O}$ $(60 \mathrm{~mL})$. The combined filtrate was washed with water $(2 \times 25 \mathrm{~mL})$, saturated CuSO_{4} solution ($3 \times 25 \mathrm{~mL}$), and water ($2 \times 25 \mathrm{~mL}$) and dried, and the solvent was removed in vacuo. Column chromatography $\left(\mathrm{SiO}_{2}\right)$ of the residue gave the $\mathrm{C}(3)$-silyl ether of $5(11.68 \mathrm{~g}, 70 \%)$ as a colorless syrup. TLC $\left(\mathrm{SiO}_{2}\right): 30 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.43$. ${ }^{1} \mathrm{H}$ NMR: $7.60-7.68$ (m, 4H), 7.32-7.50 (m, 6H), 4.68 (dd, $J=2.7,3.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.15 (ddd, $J=4.4,6.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (dd, $J=3.9,12.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.62 (dd, $J=1.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52-3.58 (m, 1H), 3.20 (s, $3 \mathrm{H}), 2.52\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 1.95-2.06(m,1H), 1.58-1.69 (m, 1H), $1.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 135.65, 135.58, 133.46, 133.32, 129.96, 129.91, 127.77, 127.70, 98.77, 68.07, 66.84, 61.64, 54.80, 33.52, 26.97, 19.14. $\mathbf{M S}\left(\mathrm{CI}, \mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z}$ (rel intensity): $387\left((\mathrm{M}+\mathrm{H})^{+}, 0.5\right), 355$ (8), 337 (18), 297 (83), 277 (92), 251 (100), 181 (77), 117 (69), 91 (24). HRMS: calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si} m / z 386.1913$, found 386.1920 .

To the above monosilyl ether ($6.60 \mathrm{~g}, 17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added pyridine ($4 \mathrm{~g}, 51 \mathrm{mmol}$) followed by neat trifluoromethanesulfonic anhydride ($7.19 \mathrm{~g}, 26 \mathrm{mmol}$). The mixture was stirred at this temperature for 2 h , diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, washed with water ($2 \times 40 \mathrm{~mL}$), saturated CuSO_{4} solution ($4 \times 30 \mathrm{~mL}$), and water ($2 \times 30 \mathrm{~mL}$), dried, and concentrated under reduced pressure to give a labile, reddish syrup ($8.60 \mathrm{~g}, 97 \%$). This was immediately dissolved in neat DBU (10 mL). After 30 min , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$, washed with water $(3 \times 30 \mathrm{~mL})$, dried, and concentrated in vacuo. Column chromatography $\left(\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc} /\right.$ hexane) furnished glycal $2 \mathrm{a}(3.33 \mathrm{~g}, 53 \%)$ as a colorless oil. $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right)$: 10% EtOAc/hexane, $R_{f} \sim 0.47$. $[\alpha]^{24} \mathrm{D}:-158^{\circ}$ (c 0.98, EtOH). ${ }^{1} \mathrm{H}$ NMR: 7.64-7.69 (m, 4H), 7.34-7.46 (m, 6H), 6.23 (dd, $J=0.7,6.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.94 (dd, $J=2.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.67 (ddd, $J=0.9,4.3,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28(\mathrm{ddt}, J=0.7,4.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 1.94-2.03(\mathrm{~m}$, 1 H), 1.76 (ddd, $J=5.0,8.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $142.33,135.80,135.73,133.67,133.49,129.71,129.63,127.65,127.58$, $104.75,98.58,62.05,56.27,37.06,26.98,19.12 . \mathrm{MS}\left(\mathrm{CI}, \mathrm{CH}_{4}\right) m / z(\mathrm{rel}$ intensity): $369\left((\mathrm{M}+\mathrm{H})^{+}, 1\right), 337(11), 311(26), 252(100), 233(98)$, 213 (22), 113 (56), 81 (54). HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{m} / \mathrm{z} 311.1103$, found 311.1108 .

2(R)-Methoxy-4(S)-[(tert-butyldiphenylsily)oxy]-6-(tri-n-butylstan-nyl)-2,3-dihydro-4H-pyran (6a). A 1.6 M pentane solution of $t-\mathrm{BuLi}$ ($217 \mathrm{mg}, 3.39 \mathrm{mmol}$) was added dropwise to $\mathrm{a}-78^{\circ} \mathrm{C}$ solution of glycal $2 \mathrm{a}(0.50 \mathrm{~g}, 1.36 \mathrm{mmol})$ in THF (1.5 mL). After $1 \mathrm{~h} \mathrm{at}-45^{\circ} \mathrm{C}$, the reaction was quenched by addition of tri-n-butyltin chloride ($1.10 \mathrm{~g}, 3.40$ mmol) and warmed to $0^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL), water ($2 \times 25 \mathrm{~mL}$), and brine (25 mL), and dried, and the solvent was removed invacuo. Flash column chromatography $\left(\mathrm{SiO}_{2}, 2 \% \mathrm{EtOAc} /\right.$ hexane) of the residue provided $6 \mathrm{a}(687 \mathrm{mg}, 77 \%)$ as a colorless oil. TLC $\left(\mathrm{SiO}_{2}\right): 20 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.63$. ${ }^{1} \mathrm{H}$ NMR: $7.50-7.70(\mathrm{~m}, 4 \mathrm{H})$, $7.18-7.45(\mathrm{~m}, 6 \mathrm{H}), 4.84$ (dd, $J=2.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=1.0$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dt}, J=4.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 1.95-2.03(\mathrm{~m}$, $1 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.22-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.01$ (s, 9H), 0.83-0.92(m, 15H). ${ }^{13}$ C NMR: $160.88,135.81,135.74,134.60$, $134.28,129.73,129.56,127.69,127.14,115.98,98.53,62.73,56.03,37.31$, $28.91,27.84,27.20,26.98,19.13,13.68,9.59$. MS (CI, $\left.\mathrm{CH}_{4}\right): m / z$ (rel intensity) $659\left((\mathrm{M}+\mathrm{H})^{+}, 2\right), 657$ (4), 601 (47), 403 (10), 335 (16), 309 (20), 213 (21), $199(41), 57$ (100). HRMS (FAB in 3-NBA) calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{SnSi}\left(\mathrm{M}^{+}-\mathrm{Bu}\right) m / z 601.2160$, found 601.2153.

Methyl β-2-Deoxy-L-ribopyranoside (7). Diethyl azodicarboxylate (DEAD) ($10.26 \mathrm{~g}, 59 \mathrm{mmol}$) was added dropwise to a $50^{\circ} \mathrm{C}$ suspension of triphenylphosphine $(15.4 \mathrm{~g}, 59 \mathrm{mmol}), 4$-nitrobenzoic acid $(9.85 \mathrm{~g}, 59$ $\mathrm{mmol})$, and $5(2.90 \mathrm{~g}, 19.6 \mathrm{mmol})$ in toluene $(60 \mathrm{~mL})$. The resultant homogeneous yellow solution was maintained for 4 h and then concentrated under reduced pressure. Column chromatography $\left(\mathrm{SiO}_{2}, 25 \% \mathrm{EtOAc} /\right.$ hexane) of the residue gave the bis(4-nitrobenzoate) of $5(4.37 \mathrm{~g}, 50 \%)$ as a colorless syrup. TLC $\left(\mathrm{SiO}_{2}\right): 50 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.61 .{ }^{1} \mathrm{H}$
(32) Greaves, E. O.; Lock, C. J. L.; Maitis, P. M. Can. J. Chem. 1968, 46, 3879-3891.

NMR: $8.20-8.30(\mathrm{~m}, 4 \mathrm{H}), 8.10-8.18(\mathrm{~m}, 4 \mathrm{H}), 5.78(\mathrm{dt}, J=5.3,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.39(\mathrm{dt}, J=5.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{brt}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (dd, $J=5.5,11 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (dd, $J=9.6,11 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$, 2.42 (ddd, $J=2.0,5.2,13 \mathrm{~Hz}, 1 \mathrm{H}$), 2.05 (ddd, $J=2,11,13 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13}$ C NMR: $163.85,163.76,150.77,150.68,134.89,134.54,130.89,130.79$, $123.62,98.12,71.16,70.16,59.24,55.19,34.82$. MS (CI, CH_{4}): m / z (rel intensity) $447\left((\mathrm{M}+\mathrm{H})^{+}, 0.5\right), 414$ (4), 351 (2), 247 (7), 195 (17), 139 (100), 93 (87). HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{20} \mathrm{HN}_{2} \mathrm{O}_{10}$ $m / z 446.0961$, found 446.0970.

To a $0^{\circ} \mathrm{C}$ methanolic solution (15 mL) of the above dibenzoate (4.2 $\mathrm{g}, 9 \mathrm{mmol}$) was added a 25% methanolic NaOMe solution (0.2 mL). After 1 h , the volatiles were removed in vacuo and the residue was chromatographed $\left(\mathrm{SiO}_{2}: 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $7(1.25 \mathrm{~g}, 90 \%)$ as white micro-needles, $\mathrm{mp} 54-56^{\circ} \mathrm{C},[\alpha]^{24} \mathrm{D}-130.7^{\circ}\left(c 1.21, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR: 4.79 (dd, $\left.J=1.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.68$ (dd, $J=4.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.12$ (ddd, $J=$ $1.4,5.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62$ (ddd, $J=3.5,11.3,13.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR: 98.83, 71.75, 69.24, 62.13, 54.79, 37.24. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{C}, 48.63 ; \mathrm{H}, 8.16$. Found: $\mathrm{C}, 48.58 ; \mathrm{H}, 8.39$.

2(R)-Methoxy-4(R)-[(tert-butyldiphenylsilyl)oxy] 2,3-dihydro-4H-pyran (2b). Diol $7(1.25 \mathrm{~g}, 8.4 \mathrm{mmol})$ was regioselectively protected as described for 2 a to give the corresponding $\mathrm{C}(3)$-silyl ether ($2.21 \mathrm{~g}, 68 \%$) as a colorless oil. TLC $\left(\mathrm{SiO}_{2}\right): 30 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.30 .{ }^{1} \mathrm{H}$ NMR: 7.60-7.70 (m, 4H), 7.30-7.42 (m, 6H), 4.10 (dd, $J=2.5,8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=3.0,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (ddd, $J=2.0,3.4,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $1.65-1.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 134.30, $134.18,133.18,133.00,128.96,128.70,127.12,126.92,98.18,67.60$, $66.14,61.15,54.36,33.06,26.43,19.25 . \mathrm{MS}\left(\mathrm{CI}, \mathrm{CH}_{4}\right): m / z(\mathrm{rel}$ intensity) $387\left((\mathrm{M}+\mathrm{H})^{+}, 1\right), 355$ (6), 337 (16), 297 (100), 277 (71), 251 (57), 199 (45), 181 (83), 163 (32), 57 (81). HRMS: calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si} m / z$ 386.1913, found 386.1944 .

Dehydration of the above monoprotected diol ($1.93 \mathrm{~g}, 5 \mathrm{mmol}$) as described for 2 a furnished $\mathbf{2 b}(0.94 \mathrm{~g}, 51 \%)$ as a colorless oil, $[\alpha]_{\mathrm{D}}{ }^{24}$ -13.2° ($\left.c 2.0, \mathrm{EtOH}\right)$. TLC $\left(\mathrm{SiO}_{2}\right): 30 \%$ EtOAc/hexane, $R_{f} \sim 0.70$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $7.74-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.12$ (dd, J $=0.83,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (ddd, $J=0.9,2.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (ddt, J $=0.8,2.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=2.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H})$, 2.20 (ddd, $J=1.7,6.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (ddd, $J=2.3,6.3,13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): 141.99, 136.20, 136.13, 134.61, 134.54, 129.99, 129.96, 128.36, 127.99, 106.14, 99.74, 63.77, 55.78, 37.84, 27.08, 19.36. MS (CI, $\left.\mathrm{CH}_{4}\right): m / z$ (rel intensity) $369\left((\mathrm{M}+\mathrm{H})^{+}, 0.5\right)$, 367 (2), 311 (36), 253 (24), 233 (43), 207 (100), 199 (21), 113 (78), 81 (91). HRMS (FAB in 3-NBA) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si} m / z 368.1808$, found 368.1796 .

Preparation of 2(R)-Methoxy-4-(R)-[(tert-butyldiphenylsilyl)oxy]-6-(tri-n-butylstannyl)-2,3-dihydro-4H-pyran (6b). Stannylation of 2b as described for 2a provided 6b (80\%) as a colorless oil. TLC (SiO_{2}): 10\% EtOAc/hexane, $R_{f} \sim 0.65 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.70-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.12-$ $7.24(\mathrm{~m}, 6 \mathrm{H}), 5.08$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (dd, $J=2.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.52(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.20$ (ddd, $J=2.1,5.2,13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.00$ (ddd, $J=2.1,4.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.30-1.43$ $(\mathrm{m}, 6 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.85-1.02(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 161.49$, $136.28,136.09,135.18,134.49,130.78,129.93,128.73,128.44,116.95$, $99.17,63.24,55.75,37.68,29.37,27.61,27.23,26.81,19.38,13.93,9.90$. MS (CI, $\left.\mathrm{CH}_{4}\right): m / z$ (rel intensity) $659\left((\mathrm{M}+\mathrm{H})^{+}, 4\right), 601(51), 403$ (20), 335 (17), 289 (23), 213 (22), 198 (37), 177 (21), 135 (38), 111 (31), 57 (100). HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{SiSn}\left(\mathrm{M}^{+}\right.$ - Bu) $m / z 601.2160$, found 601.2180 .
(3-Trimethylsilyl-2-propyny1)triphenylarsonium Bromide (3). A solution of 3-bromo-1-(trimethylsilyl)-1-propyne ${ }^{33}(7.6 \mathrm{~g}, 40 \mathrm{mmol})$ and triphenylarsine ($27.6 \mathrm{~g}, 90 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(75 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ in a sealed tube. After 28 h , the solvent was evaporated and the residue was triturated with $5 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /benzene ($2 \times 25 \mathrm{~mL}$). The precipitate was collected by filtration, washed with dry benzene (30 $\mathrm{mL})$, and recrystallized $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.4: 1\right)$ to give $3(12.6 \mathrm{~g}, 64 \%)$, $\mathrm{mp} 196^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $7.80-7.89(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.80(\mathrm{~m}, 9 \mathrm{H}), 5.21(\mathrm{~s}$, $2 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{CNMR}:-0.59,20.32,93.99,95.07,120.99,130.69$, 133.21, 134.29. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{AsBrSi}: \mathrm{C}, 57.95 ; \mathrm{H}, 5.27$. Found: C, 57.67; H, 5.28.

7(R)-Hydroxy-1-(trimethylsilyl)-3(E),5(E),9(Z)-pentadecatrien-1yne (8). To a $-78^{\circ} \mathrm{C}$ suspension of arsonium salt $3(1.02 \mathrm{~g}, 2.44 \mathrm{mmol})$ in THF/HMPA ($18 \mathrm{~mL}, 5: 1$) was added a 1 M THF solution of sodium bis(trimethylsilyl)amide ($422 \mathrm{mg}, 2.3 \mathrm{mmol}$). The reaction mixture was
(33) Johnson, R. L. J. Med. Chem. 1984, 27, 1351-1354.
warmed to $-30^{\circ} \mathrm{C}$ over 30 min , kept at this temperature for 1 h , and then recooled to $-78^{\circ} \mathrm{C}$. To this was added a THF (0.5 mL) solution of lactol $4^{16}(282 \mathrm{mg}, 0.76 \mathrm{mmol})$. The reaction mixture was warmed to $-30^{\circ} \mathrm{C}$ over 1 h , maintained for 3 h , and quenched with $25 \% \mathrm{NH}_{4} \mathrm{OAc}$ solution (5 mL). The mixture was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$, and the combined extracts were washed with water ($2 \times 10 \mathrm{~mL}$) and brine (10 $\mathrm{mL})$ and dried. All volatiles were removed in vacuo. PTLC $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2}\right.$ $\mathrm{Cl}_{2} / \mathrm{EtOAc} /$ hexane $2: 1: 7$) gave silyl E, E-dienyne $8(128 \mathrm{mg}, 58 \%)$ and E, Z-dienyne ($13 \mathrm{mg}, 6 \%$): $\operatorname{TLC}\left(\mathrm{SiO}_{2}\right), 30 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.66$ and 0.70 , respectively. The latter was isomerized nearly quantitatively to 8 by refluxing in cylohexane for 4 h with diphenyl disulfide (1 equiv) for a combined total yield of 64%. ${ }^{1} \mathrm{H}$ NMR: 6.60 (dd, $J=11,15.6 \mathrm{~Hz}$, 1 H), 6.25 (ddd, $J=1.3,10.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82 (ddt, $J=0.71,5.9$, $15.2 \mathrm{~Hz}, 1 \mathrm{H}) 5.61$ (dd, $J=0.57,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.60(\mathrm{~m}, 1 \mathrm{H})$, $5.25-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.30(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{brt}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.95-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.65\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $1.22-$ $1.40(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 142.05 , $138.46,134.18,129.33,123.79,111.29,104.23,97.30,71.55,35.25,31.51$, 29.28, 27.41, 22.56, 14.60, -0.08. MS (CI, CH_{4}): m/z (rel intensity) $291\left((\mathrm{M}+\mathrm{H})^{+}, 6\right), 275$ (14), 238 (3), 206 (10), 179 (100), 149 (29), 105 (12), 91 (51), 73 (65). HRMS (EI): calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{OSi}(\mathrm{M}-\mathrm{H})^{+}$ 289.1988, found 289.1989.

1-Bromo-7(R)-[(tert-butyldiphenylsilyl)oxy $]-3(E), 5(E), 9(Z)$-pentade-catrien-1-yne (9). To a $0^{\circ} \mathrm{C}$ THF solution (3 mL) of 8 ($92 \mathrm{mg}, 0.32$ mmol) was added tetrabutylammonium fluoride ($91 \mathrm{mg}, 0.35 \mathrm{mmol}$) as a 1 M THF solution. After 1 h , the reaction mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$, and the combined ethereal extracts were washed with $5 \% \mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$, water (2 $\times 10 \mathrm{~mL}$), and brine (10 mL), dried, and concentrated under reduced pressure to leave the E, E-dienyne ($67.5 \mathrm{mg}, 97 \%$) as a colorless but somewhat labile oil, which was immediately used in the next step. TLC $\left(\mathrm{SiO}_{2}\right): 30 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.61$. ${ }^{1} \mathrm{H}$ NMR: 6.60 (dd, $J=10.9$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.25 (dddd, $J=0.63,1.3,10.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82 (dd, $J=6.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=0.69,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.59(\mathrm{~m}$, $1 \mathrm{H}), 5.30-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), $1.25-1.30(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 141.98, 138.45, 134.18, 129.29, 123.83, 111.35, 97.20, 94.38, 71.56, 35.42, 31.51, 29.29, 27.43, 22.58, 14.08,

To a solution of the above acetylenic alcohol ($67 \mathrm{mg}, 0.31 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) were added pyridine ($123 \mathrm{mg}, 1.55 \mathrm{mmol}$) and $\mathrm{AgNO}_{3}(68 \mathrm{mg}, 0.40 \mathrm{mmol})$ followed after 10 min by tertbutylchlorodiphenylsilane ($111 \mathrm{mg}, 0.40 \mathrm{mmol}$). After 6 h , the reaction mixture was filtered through a short bed of Celite 535, and the filtrate was diluted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$, washed with saturated CuSO_{4} solution ($2 \times 15 \mathrm{~mL}$) and water ($2 \times 15 \mathrm{~mL}$), and dried. The solvent was removed in vacuo. Chromatography of the residue gave the silyl ether (133 mg , 95\%) as a colorless oil. TLC (SiO_{2}): $20 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.7 .{ }^{1} \mathrm{H}$ NMR: 7.55-7.75 (m, 4H), 7.30-7.40 (m, 6H), $6.50(\mathrm{dd}, J=10.6,15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.85$ (dd, $J=10.7,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=6.2,15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{dd}, J=2.3,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.20(\mathrm{~m}$, $1 \mathrm{H}), 2.93(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.92(\mathrm{~m}, 2 \mathrm{H})$, $1.10-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $143.00,139.95,135.35,135.00,133.89,133.61,132.38,132.18,129.63$, $128.75,127.51,127.46,124.11,109.44,82.94,79.19,73.43,35.83,31.46$, $29.18,27.29,27.00,22.56,19.33,14.04$. MS (CI, $\left.\mathrm{CH}_{4}\right): \mathrm{m} / \mathrm{z}$ (rel intensity) $457\left((\mathrm{M}+\mathrm{H})^{+}, 11\right), 399(27), 379(11), 345(100), 199$ (44), 135 (30). HRMS (EI): calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{OSi}(\mathrm{M}-\mathrm{Bu})^{+} m / e$ 399.2144, found 399.2152 .

To a solution of the above silyl ether ($130 \mathrm{mg}, 0.285 \mathrm{mmol}$) in acetone (4 mL) added AgNO_{3} ($5 \mathrm{mg}, 0.028 \mathrm{mmol}$), followed by N-bromosuccinimide (NBS) ($61 \mathrm{mg}, 0.342 \mathrm{mmol}$). After 1 h , the solvent was evaporated under reduced pressure, and the residue was triturated with hexane. The precipitated succinimide was removed by filtration, and the filtrate was evaporated to give $9(152 \mathrm{mg}, 98 \%)$ as a pale yellow oil. TLC $\left(\mathrm{SiO}_{2}\right): 20 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.71$. ${ }^{1} \mathrm{H}$ NMR: $7.55-7.80(\mathrm{~m}, 4 \mathrm{H})$, $7.24-7.45(\mathrm{~m}, 6 \mathrm{H}), 6.50(\mathrm{dd}, J=10.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=10.7$, $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}, J=6.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18-5.35(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.22(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.70-$ $1.80(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.82$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): 143.10,139.51,136.28,136.10$, $135.10,134.89,132.53,130.18,130.00,129.19,128.78,127.62,124.60$, $111.93,110.55,80.03,73.99,36.42,31.78,29.58,27.68,27.23,22.95$, 19.38, 14.28. MS (EI): m / z (rel intensity) $424\left(\left(\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{15}\right)^{+}, 16\right), 261$ (17), 199 (100), 135 (24). HRMS: calcd for $\mathrm{C}_{23} \mathrm{H}_{24}{ }^{79} \mathrm{BrOSi}$ (M $\left.\mathrm{C}_{8} \mathrm{H}_{15}\right)^{+} m / e 423.0780$, found 423.0781 .

Preparation of $2(R)$-Methoxy-4(R)-[(tert-butyldiphenylsilyl)oxy]-6-[7(R)-[(tert-butyldiphenylsilyl)oxy]-3(E),5(E),9(Z)-pentadecatrien-1-ynyl\}-2,3-dihydro-4H-pyran (10b). A solution of $\mathbf{6 b}$ ($237 \mathrm{mg}, 0.36 \mathrm{mmol}$) in toluene (8 mL) was combined with a solution of $9(161 \mathrm{mg}, 0.30 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium(0) ($14 \mathrm{mg}, 0.012 \mathrm{mmol}$) in toluene (2 mL). The initially homogeneous mixture was heated at $65^{\circ} \mathrm{C}$ for 12 h and cooled to room temperature, and the solvent was removed in vacuo. Chromatography of the residue gave 10 h ($176 \mathrm{mg}, 71 \%$) as a light yellow oil. TLC $\left(\mathrm{SiO}_{2}\right): 20 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.51 .{ }^{1} \mathrm{H}$ NMR: 7.60-7.78 (m, 8H), 7.30-7.45 (m, 12H), 6.58 (dd, $J=10.8,15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=10.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=6.3,15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.46(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{dd}, J=2.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.30$ ($\mathrm{m}, 1 \mathrm{H}$), $3.55(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.89$ $(\mathrm{m}, 3 \mathrm{H}), 1.20-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~s}, 18 \mathrm{H}), 0.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ CNMR: $142.53,139.48,135.90,135.71,133.84,132.41,129.70,129.63$, $129.09,127.68,127.64,127.50,124.18,111.00,109.56,99.26,86.41$, $73.82,62.41,56.45,36.24,35.91,31.47,29.19,27.28,26.99,26.91,22.56$, 19.31, 19.19, 14.08. MS (CI, $\left.\mathrm{CH}_{4}\right): m / z$ (rel intensity) $823\left((\mathrm{M}+\mathrm{H})^{+}\right.$, 3), 794 (14), 766 (21), 652 (47), 623 (39), 577 (22), 565 (32), 504 (17), 429 (100). HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{49} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{Si}_{2}(\mathrm{M}-\mathrm{Bu})^{+}$ $m / z 765.3795$, found 765.3803.

2(R)-Methoxy-4(S)-[(tert-butyldiphenylsiIyl)oxy $]-6(S)-[7(R)-[($ tert-butyldiphenylsilyl)oxy]-1($Z), 3(E), 5(E), 9(Z)$-pentadecatetraen-1-yl\}tetrahydropyran (11b). A methanolic solution (0.3 mL) of $10 \mathrm{~b}(75 \mathrm{mg}$, 0.091 mmol) was added dropwise to a suspension of Rieke zinc (60 mg , 10 equiv) in $\mathrm{THF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL}, 7: 5: 1)$ heated to reflux. After 3 h , the reaction mixture was cooled to ambient temperature and filtered over Celite 535 , and the clear filtrate was dried azeotropically using anhydrous benzene (5 mL). Chromatography of the residue afforded the cis-olefinic reduction product ($68 \mathrm{mg}, 90 \%$) as a pale yellow oil. TLC $\left(\mathrm{SiO}_{2}\right): 10 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.51 .{ }^{1} \mathrm{H}$ NMR: $7.65-7.80(\mathrm{~m}, 8 \mathrm{H})$, $7.32-7.55(\mathrm{~m}, 12 \mathrm{H}), 7.15(\mathrm{dd}, J=12.1,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=10.7$, $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10$ (dd, $J=10.7,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{t}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.78(\mathrm{dd}, J=6.3,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.43$ ($\mathrm{m}, 2 \mathrm{H}$), 5.10 (dd, $J=2.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ $(\mathrm{q}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.32(\mathrm{~m}, 1 \mathrm{H})$, $1.92-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~s}, 18 \mathrm{H})$, $0.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): 151.20,137.18,135.99$, $135.91,135.10,132.61,130.59,130.42,129.81,129.74,127.12,127.01$, $125.03,123.92,108.10,99.01,73.63,62.78,55.93,36.77,36.43,31.57$, $29.27,27.40,27.13,27.03,22.61,19.48,19.40,14.32 . \mathrm{MS}\left(\mathrm{CI}, \mathrm{CH}_{4}\right):$ m / z (rel intensity) $825\left((\mathrm{M}+\mathrm{H})^{+}, 3\right), 729(6), 627(15), 597(16), 585$ (33), 569 (100), 491 (37), 457 (83), 407 (43). HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{52} \mathrm{H}_{65} \mathrm{O}_{4} \mathrm{Si}_{2}(\mathrm{M}-\mathrm{Me})^{+} m / e 809.4421$, found 809.4415 .

Solutions of 6% methanolic $\mathrm{HCl}(0.1 \mathrm{~mL})$ and 1 M ethanolic $\mathrm{NaBH}_{3}-$ $\mathrm{CN}(0.5 \mathrm{~mL})$ were added simultaneously, but slowly over 2 h , to a $0^{\circ} \mathrm{C}$ solution of the above reduction product ($45 \mathrm{mg}, 0.055 \mathrm{mmol}$) in absolute $\mathrm{EtOH}(1.5 \mathrm{~mL})$. Upon complete addition, the reaction mixture was warmed to ambient temperature, where it was maintained for 3 h , quenched with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined ethereal extracts were washed with water ($2 \times 10 \mathrm{~mL}$), dried, and evaporated in vacuo. Chromatography gave 11 b ($28 \mathrm{mg}, 63 \%$) and $5(R)-11 \mathrm{~b}(6.5 \mathrm{mg}, 16 \%)$. TLC $\left(\mathrm{SiO}_{2}\right)$ of 11 b and $5(R)-11 \mathrm{~b}: 15 \%$ EtOAc/hexane, $R_{f} \sim 0.42$ and 0.45 , respectively. ${ }^{1} \mathrm{H}$ NMR of 11 b : $7.60-7.71(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 12 \mathrm{H}), 6.35(\mathrm{dd}, J=11.6,14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.18(\mathrm{dd}, J=11,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=10.7,14.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.75(\mathrm{~m}, 4 \mathrm{H}), 5.05-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.55-$ $4.70(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.39(\mathrm{~m}, 4 \mathrm{H})$, 1.72-1.90(m, 3H), 1.60-1.71 (m, 1H), 1.10-1.35 (m, 6H), $1.06(\mathrm{~s}, 18 \mathrm{H})$, $0.84(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{52} \mathrm{H}_{67} \mathrm{O}_{4}-$ $\mathrm{Si}_{2}(\mathrm{M}-\mathrm{Me})^{+} m / z 811.4578$, found 811.4539 .

3(S),12(R)-Bis[(tert-butyldiphenylsilyl)oxy]-5(S)-hydroxy-6(Z),8-(E),10(E),14(Z)-eicosatetraenoic δ-lactone (12b). Methyllactol 11b (28 $\mathrm{mg}, 0.034 \mathrm{mmol}$) was heated at $60^{\circ} \mathrm{C}$ in a mixture of THF $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}$ (1:1:2, 3 mL). After 5 h , the cooled reaction mixture was diluted with water (10 mL) and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with ice cold $5 \% \mathrm{NaHCO}_{3}$ solution ($2 \times$ 10 mL) and water ($2 \times 10 \mathrm{~mL}$), dried, and concentrated in vacuo to give the lactol ($19 \mathrm{mg}, 69 \%$) as a light yellow oil. TLC (SiO_{2}): 30\% EtOAc/ hexane, $R_{f} \sim 0.45$. This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and added to a suspension of pyridinium chlorochromate ($11 \mathrm{mg}, 0.05 \mathrm{mmol}$) and neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ (10 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. After 2 h , the reaction mixture was filtered, the filtrate concentrated in vacuo, and the residue chromatographed to yield $\mathbf{1 2 b}$ ($14 \mathrm{mg}, 69 \%$ overall) as a colorless oil. TLC $\left(\mathrm{SiO}_{2}\right): 30 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.60$. ${ }^{1} \mathrm{H}$ NMR: $7.60-7.86(\mathrm{~m}, 8 \mathrm{H})$,
$7.38-7.59(\mathrm{~m}, 12 \mathrm{H}), 6.32$ (dd, $J=11.6,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (dd, $J=10.7$, $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=10.7,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.84$ (dd, $J=6.1,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.55(\mathrm{~m}, 3 \mathrm{H}), 4.94-5.08$ (m, 1 H), $4.22-4.45$ (m, 2H), 2.91 (ddd, $J=1.3,5.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (dd, $J=7.9,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.96$ $(\mathrm{m}, 3 \mathrm{H}), 1.22-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~s}, 18 \mathrm{H}), 0.96(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$ ${ }^{13}$ CNMR: $170.08,138.54,135.90,135.85,135.66,134.71,134.30,134.01$, $133.03,132.74,132.33,132.10,130.13,130.08,129.62,129.58,129.10$ $127.91,127.86,127.59,127.52,127.46,126.10,125.43,124.16,73.41$, $73.05,65.33,39.82,39.05,35.94,31.46,29.18,27.28,27.06,26.81,26.42$, 22.56, 19.74, 19.38, 14.06. HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{48} \mathrm{H}_{57} \mathrm{O}_{4-}$ $\mathrm{Si}_{2}(\mathrm{M}-\mathrm{Bu})^{+} m / z 753.3795$, found 753.3801.

3(S)-Hydroxyleukotriene B_{4} Methyl Ester (Me 1b). Methanolysis of $\mathbf{1 2 b}$ ($12 \mathrm{mg}, 0.015 \mathrm{mmol}$) in dry $\mathrm{MeOH}(1 \mathrm{~mL})$ containing $\mathrm{Et}_{3} \mathrm{~N}(0.1$ mL) for 1 h and evaporation of all volatiles in vacuo generated the corresponding methyl ester ($12 \mathrm{mg}, 100 \%$) as a colorless oil. TLC $\left(\mathrm{SiO}_{2}\right): 30 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.51 .{ }^{1} \mathrm{H}$ NMR: $7.62-7.85(\mathrm{~m}, 8 \mathrm{H})$, $7.25-7.42(\mathrm{~m}, 12 \mathrm{H}), 6.18$ (dd, $J=11.6,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=10.7$, $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (dd, $J=10.7,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=11.5 \mathrm{~Hz}$ $1 \mathrm{H}), 5.72$ (dd, $J=6.1,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.39$ (m, 3H), 4.68-4.80 (m, $1 \mathrm{H}), 4.31-4.43$ (m, 1H), 4.18-4.23 (m, 1H), 3.52 (s, 3H), 2.58 (dd, J $=1.4,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.96\left(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $1.58-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.10-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 18 \mathrm{H})$, $0.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $171.56,137.33,135.89,134.42$, $134.17,133.23,132.67,132.41,132.19,130.00,129.90,129.78,129.54$, $127.83,127.71,127.51,127.48,126.51,124.34,74.81,68.53,64.49,51.48$ $43.69,41.95,36.04,31.47,29.21,27.29,27.07,26.93,22.58,19.34,19.26$, 14.08. $\mathrm{MS}\left(\mathrm{CI}, \mathrm{CH}_{4}\right): m / z$ (rel intensity) $843\left((\mathrm{M}+\mathrm{H})^{+}, 6\right), 790(63)$, 674 (75), 489 (90), 398 (100), 165 (74). HRMS (FAB in 3-NBA)/ NaI): calcd for $\mathrm{C}_{53} \mathrm{H}_{70} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} m / z 865.4660$, found 865.4684.

The preceding methyl ester ($11 \mathrm{mg}, 0.013 \mathrm{mmol}$) was dissolved in THF (1 mL) and added to a mixture of tetrabutylammonium fluoride trihydrate ($21 \mathrm{mg}, 0.065 \mathrm{mmol}$) and acetic acid ($9 \mathrm{mg}, 0.143 \mathrm{mmol}$) in THF (1 mL). After stirring at $45^{\circ} \mathrm{C}$ for 14 h , the reaction mixture was diluted with water (10 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with ice cold $5 \% \mathrm{NaHCO}_{3}$ solution $(2 \times 10 \mathrm{~mL})$ and water ($2 \times 10 \mathrm{~mL}$), dried, and evaporated in vacuo. Chromatographic purification gave 1b methyl ester ($4 \mathrm{mg}, 79 \%$) as a colorless oil. TLC (SiO_{2}): $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, R_{f} \sim 0.44$. ${ }^{1} \mathrm{H}$ NMR: $6.50(\mathrm{dd}, J=11.7,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=10.6,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (dd, $J=10.7,14.7,1 \mathrm{H}$), 6.05 (t, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.80 (dd, $J=6.5$, $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.66(\mathrm{~m}, 2 \mathrm{H}), 5.30-5.42(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.94(\mathrm{~m}$, $1 \mathrm{H}), 4.30-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=$ $3.3,1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 2.32 (dd, $J=1.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.27 (d, J $=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $2.24-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.16(\mathrm{~m}$, $2 \mathrm{H}), 1.62-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.08-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{CNMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 172.93,137.49,134.78,134.23,133.00,130.27,129.99$, $128.01,125.63,71.97,65.42,65.40,51.17,43.30,41.50,35.84,31.79$, $29.67,27.75,22.93,14.26$. HRMS: calcd for $\mathrm{C}_{30} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}_{3}$ (tris-TMS ether of 1b methyl ester) $m / z 582.3592$, found 582.3598 .

Preparation of 2(R)-Methoxy-4(S)-[(tert-butyldiphenylsilyl)oxy]-6-[7(R)-[(tert-butyldiphenylsilyl) oxy]-3(E),5(E),9(Z)-pentadecatrien-1-ynyl]-2,3-dihydro-4H-pyran (10a). Palladium-mediated coupling of 9 with 6a as described for the preparation of 10 b gave $10 \mathrm{a}(61 \%)$ as a pale yellow oil. TLC $\left(\mathrm{SiO}_{2}\right): 20 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.64$. ${ }^{1} \mathrm{H}$ NMR: $7.55-7.75(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.48(\mathrm{~m}, 12 \mathrm{H}), 6.50(\mathrm{dd}, J=10.6,15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98(\mathrm{dd}, J=10.7,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}, J=6.3,15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.50(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00(\mathrm{dd}, J=2.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.25(\mathrm{~m}$, $1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.88-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.82(\mathrm{~m}$, $3 \mathrm{H}), 1.15-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 18 \mathrm{H}), 0.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $142.53,139.49,135.97,135.83,135.77,134.06,132.39,129.75$, $129.64,129.13,127.39,127.53,124.24,111.51,109.57,99.36,86.47$, $73.66,62.60,56.35,36.21,35.98,31.51,29.22,27.35,27.08,27.00,22.58$, 19.36, 19.16, 14.00. MS (CI, $\left.\mathrm{CH}_{4}\right): m / z$ (rel intensity) 823 (($\mathrm{M}+$ $\left.\mathrm{H}^{+}+4\right), 794(16), 766(20), 652(44), 623$ (37), 577 (21), 565 (33), 504 (18), 429 (100). HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{49} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{Si}_{2}$ (M $-\mathrm{Bu})^{+} m / z 765.3795$, found 765.3814 .
Preparation of 2(R)-Methoxy-4(R)-[(tert-butyldiphenylsilyl)oxy]-6(S)-[7(R)-[(tert-butyldiphenylsilyl)oxy $]-1(Z), 3(E), 5(E), 9(Z)$-pentadecatet-raen-1-yl]tetrahydropyran (11a). Rieke zinc reduction of 10 a as described for 10b afforded the corresponding cis-olefin (79\%) as a light yellow oil.

TLC $\left(\mathrm{SiO}_{2}\right): 10 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.52 .{ }^{1} \mathrm{H}$ NMR: $7.60-7.72(\mathrm{~m}$, $8 \mathrm{H}), 7.27-7.47(\mathrm{~m}, 12 \mathrm{H}), 7.08$ (dd, $J=11.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (dd, $J=10.7,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=10.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{t}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.68 (dd, $J=6.3,14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (d, $J=11.8 \mathrm{~Hz}$, 1 H), $5.15-5.34(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=2.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})$, $2.10-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.30$ $(\mathrm{m}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 18 \mathrm{H}), 0.92(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 151.80 , $137.05,135.98,135.88,134.56,132.13,130.57,130.33,129.59,129.54$, $127.63,127.49,124.55,123.04,107.19,99.17,73.82,63.11,56.58,36.59$ $36.18,29.22,27.35,27.12,27.05,22.58,19.39,19.21,14.00 . \mathrm{MS}$ (CI, $\left.\mathrm{CH}_{4}\right): m / z$ (rel intensity) $825\left((\mathrm{M}+\mathrm{H})^{+}, 4\right), 729(7), 627(15), 597$ (17), 585 (32), 569 (100), 491 (38), 457 (84), 407 (43). HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{52} \mathrm{H}_{67} \mathrm{O}_{3} \mathrm{Si}_{2}\left(\mathrm{M}-\mathrm{OCH}_{3}\right)^{+} m / z 795.4629$, found 795.4608 .

The above enol ether was reduced with $\mathrm{NaBH}_{3} \mathrm{CN}$ in the presence of methanolic HCl as described for the preparation of 11b to give 11a (67\%) and $5(R)-11 \mathrm{a}$ as colorless syrups. TLC $\left(\mathrm{SiO}_{2}\right)$ of 11a and $5(R)-11 \mathrm{a}$: $10 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.39$ and 0.37 , respectively. 'H NMR of 11a: $7.60-7.81(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.48(\mathrm{~m}, 12 \mathrm{H}), 5.85-6.45(\mathrm{~m}, 3 \mathrm{H}), 5.60-5.75$ $(\mathrm{m}, 2 \mathrm{H}), 5.07-5.58(\mathrm{~m}, 4 \mathrm{H}), 4.60-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.50(\mathrm{~m}, 2 \mathrm{H})$, $3.50(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.35(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.45(\mathrm{~m}, 6 \mathrm{H})$, $1.10(\mathrm{~s}, 18 \mathrm{H}), 0.83(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Preparation of $3(R), 12(R)$-Bis $($ (tert-butyldiphenylsilyl)oxy)5(S)-hy-droxy- $6(Z), 8(E), 10(E), 14(Z)$-eicosatetraenoic δ-lactone (12a). Immediate hydrolysis and PCC oxidation of 11a as described for the synthesis of $\mathbf{1 2 b}$ furnished $12 \mathrm{a}(60 \%)$ as a colorless oil. $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right): 30 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.58$. ${ }^{1} \mathrm{H}$ NMR: $7.63-7.87(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.59(\mathrm{~m}, 12 \mathrm{H})$, 6.31 (dd, $J=11.6,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=10.7,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (dd, $J=10.7,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=$ $6.2,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.58(\mathrm{~m}, 3 \mathrm{H}), 4.89-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.48(\mathrm{~m}$, 2 H), 2.83 (ddd, $J=1.5,3.9,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dd, $J=5.2,17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.20-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.20-$ $1.35(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{~s}, 18 \mathrm{H}), 0.93(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $170.17,138.43,135.80,135.81,135.68,134.73,134.40,134.08,133.00$, $132.16,132.33,132.11,130.18,130.07,129.63,129.57,129.11,127.83$, $127.71,127.60,127.50,127.45,126.08,125.41,124.20,73.14,72.97$, $65.43,39.81,39.15,35.95,31.45,29.32,27.31,27.16,26.78,26.43,22.60$, 19.78, 19.40, 14.16. MS (CI, $\left.\mathrm{CH}_{4}\right): m / z$ (rel intensity) $811\left(\mathrm{M}^{+}+1\right.$, 0.5), 753 (6), 699 (100), 399 (3), 199 (18), 135 (31). HRMS (FAB in 3-NBA): calcd for $\mathrm{C}_{52} \mathrm{H}_{65} \mathrm{O}_{4} \mathrm{Si}_{2}(\mathrm{M}-\mathrm{Me})^{+} m / z 809.4421$, found 809.4416.

3(R)-Hydroxyleukotriene B_{4} Methyl Ester (Me-1a). Methanolysis of 12 a as described for 12 b gave the corresponding methyl ester disilyl ether (100%) as a colorless oil. TLC $\left(\mathrm{SiO}_{2}\right): 30 \% \mathrm{EtOAc} /$ hexane, $R_{f} \sim 0.53$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): 7.75-7.84 (m, 8H), 7.16-7.34 (m, 12H), 6.41 (dd, $J=11.6,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=10.9,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J$ $=10.8,14.6, \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=6.5,14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.40-5.58(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{dd}, J=8.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.80$ $(\mathrm{m}, 2 \mathrm{H}), 4.38-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.90$ (m, 4H), 1.22-1.34(m, 6H) $1.18(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $171.68,137.73,136.31,135.71,135.38,134.47$, $134.16,133.94,132.60,130.40,130.18,129.95,128.12,127.92,127.81$, $126.40,124.71,74.50,69.18,65.52,51.89,43.51,42.36,36.00,31.88$, $29.57,27.71,27.41,27.28,22.96,19.69,19.60,14.49 . \mathrm{MS}\left(\mathrm{CI}, \mathrm{CH}_{4}\right)$: m / z (rel intensity) $843\left((\mathrm{M}+\mathrm{H})^{+}, 0.3\right), 797$ (36), 709 (38), 699 (44), 529 (43), 411 (83), 219 (62), 149 (100). HRMS (FAB in 3-NBA/NaI): calcd for $\mathrm{C}_{53} \mathrm{H}_{70} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} m / z 865.4660$, found 865.4671 .

Desilylation of the above methyl ester as described for the synthesis of 1 lb methyl ester gave 1a methyl ester (81%) as a colorless oil. TLC $\left(\mathrm{SiO}_{2}\right): 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, R_{f} \sim 0.45 .{ }^{1} \mathrm{H}$ NMR: $6.58(\mathrm{dd}, J=11.7$, $13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.34 (ddd, $J=1.1,6.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (dd, $J=8.8$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=6.3,14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.50-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.42(\mathrm{~m}, 2 \mathrm{H}), 4.89$ (ddd, $J=3.7,8.8,12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.65\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 2.97 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 2.52 (dd, $J=1.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.74-2.40 (m, 2H), 1.88-2.08 (m, 2H), 1.62-1.82 (m, 2H), 1.56 (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $1.10-1.42(\mathrm{~m}, 6 \mathrm{H}), 0.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{CNMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 172.34,137.13,134.71,134.20,133.18,130.06,129.81$, $128.46,125.60,71.91,65.48,65.41,51.25,43.41,41.58,35.86,31.82$, $29.68,27.71,22.80,14.02$. HRMS: calcd for $\mathrm{C}_{30} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}_{3}$ (tris-TMS ether of 1a methyl ester) $m / z 582.3592$, found 582.3588 .

Isolation of Rat Hepatocytes and LTB_{4} Incubation. Hepatocytes were isolated as reported using a collagenase-perfusion procedure. ${ }^{34}$ Cell viability was 80% as determined by trypan blue exclusion. Cells $(7.5 \times$ $10 \% / \mathrm{mL}$) were incubated at $37^{\circ} \mathrm{C}$ for 5 min in 10 mL of buffer (128.8 $\mathrm{mM} \mathrm{NaCl}, 5.2 \mathrm{mM} \mathrm{KCl}, 0.9 \mathrm{mM} \mathrm{MgSO} 4,1.0 \mathrm{mM} \mathrm{CaCl} 2,3.0 \mathrm{mM}$ $\mathrm{Na}_{2} \mathrm{HPO}_{4}, 5.0 \mathrm{mM}$ glucose). The P-450 inhibitor, ethoxyresorufin (10 $\mu \mathrm{M})$, was added with ethanol (180 mM) and $\mathrm{LTB}_{4}(24 \mu \mathrm{M})$. Cells were incubated for 30 min at $37^{\circ} \mathrm{C}$ followed by centrifugation. The supernatant was removed and passed through a C -18 solid-phase extraction column (Bond Elute), which was washed with water. The metabolites were then eluted with methanol (8 mL).

Reverse-Phase HPLC Analysis. The extracted supernatant from the rat hepatocyte incubation was evaporated under vacuum and reconstituted in the initial HPLC mobile phase. The sample was analyzed by RP HPLC on an Ultremex column ($4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m} \mathrm{C}$-18; Phenomenex, Rancho Palos Verdes, CA). The mobile phase consisted of methanol/ water, 0.05% acetic acid (pH adjusted to 5.75 with ammonium hydroxide) at an initial composition of 50% methanol followed by a linear gradient to 100% methanol over 40 min . UV absorbance was monitored (HP1040A photodiode array detector, Hewlett-Packard, Palo Alto, CA) at 270 nm (see the supplementary material). Synthetic $3(R)$ - and $3(S)$ LTB $_{4}$ methyl esters (1a and 1b methyl esters, respectively) were mixed together in a 2:1 ratio and then analyzed by RP HPLC using the same conditions (see the supplementary material). Retention times for 1a and 1b were 27.8 and 28.4 min , respectively. A new, more polar product designated metabolite I was collected during HPLC of the incubation, taken to dryness, and methylated using ethereal diazomethane. The methyl ester of metabolite I had a retention time of 28.5 min (see the supplementary material). The methyl esters of $\mathbf{1 a , b}$ were added to the methyl ester derivative of metabolite I and coinjected (see the supplementary material). Metabolite I coeluted with lb methyl ester, thus establishing the $3(S)$-stereochemistry of the enzymatic product.

GC/MS Analysis. A Finnigan SSQ 70 (San Jose, CA) was employed for both ECI and EI analyses. ECI mass spectra (negative ions) were obtained in the chemical ionization mode with methane as the moderating gas, and EI mass spectra (positive ions) were obtained using an electron energy of 70 eV . The GC capillary column was a $10 \mathrm{~m} \times 0.25 \mathrm{~mm}$ DB-1 (J\&W; Folsom, CA) column with $0.25-\mu \mathrm{m}$ film thickness. The injector temperature was maintained at $275^{\circ} \mathrm{C}$ and the transfer line at $300^{\circ} \mathrm{C}$. Samples ($1 \mu \mathrm{~L}, 2-10 \mathrm{ng} / \mu \mathrm{L}$ acetonitrile for $\mathrm{PFB} / \mathrm{TMS}$ derivatives and ECI analysis and $20-40 \mathrm{ng} / \mu \mathrm{L}$ acetonitrile for methyl ester/TMS derivatives and EI analysis) were injected into the gas chromatograph using an initial column temperature of $150^{\circ} \mathrm{C}$ followed by a linear program at $15^{\circ} \mathrm{C} / \mathrm{min}$ to $310^{\circ} \mathrm{C}$. Equivalent carbon values (EC values) for PFB derivatives were determined by comparison with standard PFB esters of straight chain fatty acids. Samples were hydrogenated in methanol (400 $\mu \mathrm{L}$) over $5 \% \mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}(0.2-0.4 \mathrm{mg})$. Hydrogen gas was bubbled through the suspension for 2 min at room temperature. The methanol supernatant was removed from the catalyst after centrifugation and the catalyst washed with additional methanol. The combined methanol extracts were

[^4]evaporated to dryness under a nitrogen stream, and the sample was derivatized for GC/MS analysis.
ECI GC/MS Analysis of Metabolite I. Lyophilized metabolite I was derivatized by the addition of a 10% solution (v / v) of N, N-diisopropylethylamine in acetonitrile ($50 \mu \mathrm{~L}$) followed by the addition of a 10% solution (v / v) of pentafluorobenzyl bromide in acetonitrile ($50 \mu \mathrm{~L}$). The sample was kept at room temperature for 30 min and evaporated under a N_{2} stream. The dried sample was further derivatized with the addition of acetonitrile ($50 \mu \mathrm{~L}$) and bis(trimethylsilyl)trifluoroacetamide ($50 \mu \mathrm{~L}$) and kept at $60^{\circ} \mathrm{C}$ for 5 min followed by evaporation again under a N_{2} stream. The resultant PFB/TMS derivative of metabolite I was analyzed by ECI GC/MS ($\mathrm{EC}=24.2$). This revealed an abundant carboxylate anion (A^{-}) ($\mathrm{M}-181$) at $m / z 567$. Additional fragment ions were observed at $m / z 495\left[\mathrm{~A}^{-}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCH}_{2}\right], m / z 477\left(\mathrm{~A}^{-}-\mathrm{TMSOH}\right], m / z 405$ ($\mathrm{A}^{-}-\mathrm{TMSOTMS}$), $m / z 387$ [$\mathrm{A}^{-}-2$ (TMSOH)), $m / z 361$ (loss of CO_{2} from $m / z 405$), $m / z 315$ (A^{-}-TMSOTMS-TMSOH], $m / z 297$ [A-3(TMSOH)), and $m / z 271$ (loss of TMSOH from $m / z 361$). Analysis of the PFB/TMS derivative of hydrogenated metabolite I $(E C=24.4)$ confirmed the presence of four double bonds with A^{-}observed at m / z 575.

EI GC/MS Analysis of 1 a and 1 b Methyl Esters. TMS derivatives were prepared (see above) from hydrogenated 1a and 1 b methyl esters. Analysis by EI GC/MS showed identical spectra and were identical to the published spectrum of the reduced TMS ether methyl ester derivative of the metabolite obtained from rat hepatocytes. ${ }^{4}$ TMS derivatives of 1a and 1b methyl esters were also prepared. These derivatives displayed good GC behavior, and the positive ion mass spectra obtained were identical. The molecular ion, M^{++}, was observed at $m / z 582(0.15 \%)$, and additional odd electron ions were observed at $\mathrm{m} / \mathrm{z} 492\left(4.4 \%, \mathrm{M}^{+}+\right.$ - TMSOH) and at $m / z 402\left(2.6 \%\right.$, loss of 2 (TMSOH) from $\mathrm{M}^{+}+$). A fragment ion indicative of the $\mathrm{C}-3$ substituent was observed at $m / z 175$ (48.2%), and a fragment ion indicative of the C - 5 substituent was observed at $\mathrm{m} / \mathrm{z} 291$ (58.0%). Fragment ions indicative of the $\mathrm{C}-12$ substituent were observed at $m / z 471(4.0 \%)$ and at $m / z 381(45.7 \%$, loss of TMSOH from $m / z 471$).

Acknowledgment. The authors express their gratitude to Dr. Charles Mioskowski (Louis Pasteur University) and Professor Marc Tius (University of Hawaii) for technical advice. This research was supported financially by the USPHS NIH (DK38226, HL-25785) and the Robert A. Welch Foundation (I782).

Supplementary Material Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra for all key intermediates and reverse-phase HPLC chromatograms of the LTB_{4} hepatocyte incubation extract, coinjection of 1 a and 1 b methyl esters, and coinjection of $\mathbf{1 a} / \mathbf{1 b}$ methyl esters (1:1) with metabolite I methyl ester (33 pages). This information is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: + University of Texas Southwestern Medical Center.
 ₹ National Jewish Center for Immunology and Respiratory Medicine.
 - Abstract published in Advance ACS Abstracts, May 15, 1994.
 (1) Presented in part at the 204th ACS National Meeting, Washington, DC, August 23-28, 1992.
 (2) Reviews: Samuelsson, B. Science 1983, 220, 568-575. Marx, J. L. Ibid. 1982, 215, 1380-1383.
 (3) Hagmann, W.; Korte, M. Biochem. J. 1990, 267, 467-470.
 (4) Harper, T. W.;Garrity, M. J.; Murphy, R.C.J. Biol. Chem. 1986, 261, 5414-5418.
 (5) For example, 20-OH-LTB4: Pettipher, E. R.; Salter, E. D.; Breslow, R.; Raycroft, L.; Showell, H. J. Br. J. Pharm. 1993, 110, 423-427.
 (6) Shirley, M. A.; Murphy, R. C. Ann. N.Y. Acad. Sci. 1991, 629, 410412.
 (7) Shirley, M. A.; Reldhead, C. T.; Murphy, R. C. Biochem. Biophys. Res. Commun. 1992, 185, 604-610.
 (8) Lehmann, W. D.; Furstenberger, G. Angew. Chem., Int. Ed. Engl. 1993, 32, 1027-1029.
 (9) For the asymmetric, total synthesis of another bioactive secondary metabolite of LTB $_{4}$, see: Yadagiri, P.; Lumin, S.; Falck, J. R.; Karara, A.; Capdevila, J. Tetrahedron Lett. 1989, 30, 429-432.

[^1]: (10) An alternative total synthesis of $3-\mathrm{OH}-\mathrm{LTB}_{4}$ has been described recently: Chauhan, K.; Bhatt, R. K.; Falck, J. R.; Capdevila; J. H. Tetrahedron Lett. 1994, 35, 1825-1828.
 (11) Deriaz, R. E.; Overend, W. G.; Stacey, M.; Wittins, L. F. J. Chem. Soc. 1949, 2836-2841.
 (12) Kinzy, W.; Schmidt, R. R. Tetrahedron Lett. 1987, 28, 1981-1984.
 (13) Tius, M. A.; Galeno, J. G.; Gu, X.; Zaidi, J. H. J. Am. Chem. Soc. 1991, $113,5775-5783$.

[^2]: (14) Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017-3020. Coleman, R. S.; Fraser, J. R. J. Org. Chem. 1993, 58, 385-392.
 (15) The less basic triphenylphosphonium analogue, in contrast, gave inferior yields (typically $<20 \%$) and /or complex product mixtures. Similar difficulties have been reported: Corey, E. J.; Ruden, R. A. Tetrahedron Lett. 1973, 1495-1499.
 (16) Lumin, S.; Falck, J. R.; Schwartzman, M. L. Tetrahedron Lett. 1991, 32,2315-2318. On a preparative scale, the vinylcuprate coupling was conducted in toluene at $-10^{\circ} \mathrm{C}$ for $14-15 \mathrm{~h}$ to avoid precipitation of the bis-tosylate, which is only partially soluble in $\mathrm{Et}_{2} \mathrm{O}$.
 (17) Rokach, J.; Young, R. N.; Kakushima, M. Tetrahedron Lett. 1981, 22, 979-982.
 (18) Magriotis, P. A.; Scott, M. E.; Kim, K. D. Tetrahedron Lett. 1991, 32, 6085-6088.
 (19) Palladium(II) catalysts, inter alia, $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2},\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{PhCH}_{2}\right) \mathrm{PdCl}$, $\mathrm{PdCl}_{2}(\mathrm{dppf})$, and $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}$, in a variety of solvents, were not satisfactory.
 (20) Conceptually related couplings of stannylglycals: Dubois, E.; Beau, J.-M. J. Chem. Soc.. Chem. Commun. 1990, 1191. Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, 55, 5808-5810.
 (21) The more labile iodide version of 9 also participated in the coupling, but gave erraticyields of $10(34-61 \%)$. Also, disappointing results were obtained by reversing the functionalities, i.e., having the tin on 9 in place of the bromide and a halogen on 6 instead of a stannyl group.
 (22) Zinc copper-silver couple as recommended by Tropis et al. was somewhat sluggish and never reached completion: Tropis, M. A.; Pougny, J. R. Tetrahedron Lett. 1989, 30, 4951-4952. Catalytic hydrogenation using P2-Ni or Lindlar was complicated by incomplete reaction and/or overreduction.

[^3]: ${ }^{a}$ See ref 26.
 are reported on the δ scale using tetramethylsilane as internal reference. Optical rotations were measured with a Perkin-Elmer 241 MC polarimeter. Low-resolution mass spectra were obtained with a Finnigan SSQ 700 mass spectrometer, and high-resolution mass spectra were provided by the Midwest Center for Mass Spectrometry with partial support from

[^4]: (34) Berry, M. N.; Edwards, A. M.; Barritt, G. J. In Isolated Hepatocytes: Preparation, Properties and Applications; Elsevier: Amsterdam, 1991; pp 25-32.

